Tizen Native API  5.0
UV Mapping (Rotation, Perspective, 3D...)

Evas allows different transformations to be applied to all kinds of objects. These are applied by means of UV mapping.

With UV mapping, one maps points in the source object to a 3D space positioning at target. This allows rotation, perspective, scale and lots of other effects, depending on the map that is used.

Each map point may carry a multiplier color. If properly calculated, these can do shading effects on the object, producing 3D effects.

As usual, Evas provides both the raw and easy to use methods. The raw methods allow developers to create their maps somewhere else, possibly loading them from some file format. The easy to use methods calculate the points given some high-level parameters such as rotation angle, ambient light, and so on.

Note:
applying mapping will reduce performance, so use with care. The impact on performance depends on engine in use. Software is quite optimized, but not as fast as OpenGL.

Map points

Rotation

A map consists of a set of points, currently only four are supported. Each of these points contains a set of canvas coordinates x and y that can be used to alter the geometry of the mapped object, and a z coordinate that indicates the depth of that point. This last coordinate does not normally affect the map, but it's used by several of the utility functions to calculate the right position of the point given other parameters.

The coordinates for each point are set with evas_map_point_coord_set(). The following image shows a map set to match the geometry of an existing object.

map-set-map-points-1.png

This is a common practice, so there are a few functions that help make it easier.

evas_map_util_points_populate_from_geometry() sets the coordinates of each point in the given map to match the rectangle defined by the function parameters.

evas_map_util_points_populate_from_object() and evas_map_util_points_populate_from_object_full() both take an object and set the map points to match its geometry. The difference between the two is that the first function sets the z value of all points to 0, while the latter receives the value to set in said coordinate as a parameter.

The following lines of code all produce the same result as in the image above.

 evas_map_util_points_populate_from_geometry(m, 100, 100, 200, 200, 0);
 // Assuming o is our original object
 evas_object_move(o, 100, 100);
 evas_object_resize(o, 200, 200);
 evas_map_util_points_populate_from_object(m, o);
 evas_map_util_points_populate_from_object_full(m, o, 0);

Several effects can be applied to an object by simply setting each point of the map to the right coordinates. For example, a simulated perspective could be achieve as follows.

map-set-map-points-2.png

As said before, the z coordinate is unused here so when setting points by hand, its value is of no importance.

map-set-map-points-3.png

In all three cases above, setting the map to be used by the object is the same.

 evas_object_map_set(o, m);
 evas_object_map_enable_set(o, EINA_TRUE);

Doing things this way, however, is a lot of work that can be avoided by using the provided utility functions, as described in the next section.

Utility functions

Utility functions take an already set up map and alter it to produce a specific effect. For example, to rotate an object around its own center you would need to take the rotation angle, the coordinates of each corner of the object and do all the math to get the new set of coordinates that need to be set in the map.

Or you can use this code:

 evas_object_geometry_get(o, &x, &y, &w, &h);
 m = evas_map_new(4);
 evas_map_util_points_populate_from_object(m, o);
 evas_map_util_rotate(m, 45, x + (w / 2), y + (h / 2));
 evas_object_map_set(o, m);
 evas_object_map_enable_set(o, EINA_TRUE);
 evas_map_free(m);

Which will rotate the object around its center point in a 45 degree angle in the clockwise direction, taking it from this

map-rotation-2d-1.png

to this

map-rotation-2d-2.png

Objects may be rotated around any other point just by setting the last two paramaters of the evas_map_util_rotate() function to the right values. A circle of roughly the diameter of the object overlaid on each image shows where the center of rotation is set for each example.

For example, this code

 evas_object_geometry_get(o, &x, &y, &w, &h);
 m = evas_map_new(4);
 evas_map_util_points_populate_from_object(m, o);
 evas_map_util_rotate(m, 45, x + w - 20, y + h - 20);
 evas_object_map_set(o, m);
 evas_object_map_enable_set(o, EINA_TRUE);
 evas_map_free(m);

produces something like

map-rotation-2d-3.png

And the following

 evas_output_size_get(evas, &w, &h);
 m = evas_map_new(4);
 evas_map_util_points_populate_from_object(m, o);
 evas_map_util_rotate(m, 45, w, h);
 evas_object_map_set(o, m);
 evas_object_map_enable_set(o, EINA_TRUE);
 evas_map_free(m);

rotates the object around the center of the window

map-rotation-2d-4.png

3D Maps

Maps can also be used to achieve the effect of 3-dimensionality. When doing this, the z coordinate of each point counts, with higher values meaning the point is further into the screen, and smaller values (negative, usually) meaning the point is closer towards the user.

Thinking in 3D also introduces the concept of back-face of an object. An object is said to be facing the user when all its points are placed in a clockwise fashion. The next image shows this, with each point showing the with which is identified within the map.

map-point-order-face.png

Rotating this map around the Y axis would leave the order of the points in a counter-clockwise fashion, as seen in the following image.

map-point-order-back.png

This way we can say that we are looking at the back face of the object. This will have stronger implications later when we talk about lighting.

To know if a map is facing towards the user or not it's enough to use the evas_map_util_clockwise_get() function, but this is normally done after all the other operations are applied on the map.

3D rotation and perspective

Much like evas_map_util_rotate(), there's the function evas_map_util_3d_rotate() that transforms the map to apply a 3D rotation to an object. As in its 2D counterpart, the rotation can be applied around any point in the canvas, this time with a z coordinate too. The rotation can also be around any of the 3 axis.

Starting from this simple setup

map-3d-basic-1.png

and setting maps so that the blue square to rotate on all axis around a sphere that uses the object as its center, and the red square to rotate around the Y axis, we get the following. A simple overlay over the image shows the original geometry of each object and the axis around which they are being rotated, with the Z one not appearing due to being orthogonal to the screen.

map-3d-basic-2.png

which doesn't look very real. This can be helped by adding perspective to the transformation, which can be simply done by calling evas_map_util_3d_perspective() on the map after its position has been set. The result in this case, making the vanishing point the center of each object:

map-3d-basic-3.png

Color and lighting

Each point in a map can be set to a color, which will be multiplied with the objects own color and linearly interpolated in between adjacent points. This is done with evas_map_point_color_set() for each point of the map, or evas_map_util_points_color_set() to set every point to the same color.

When using 3D effects, colors can be used to improve the looks of them by simulating a light source. The evas_map_util_3d_lighting() function makes this task easier by taking the coordinates of the light source and its color, along with the color of the ambient light. Evas then sets the color of each point based on the distance to the light source, the angle with which the object is facing the light and the ambient light. Here, the orientation of each point as explained before, becomes more important. If the map is defined counter-clockwise, the object will be facing away from the user and thus become obscured, since no light would be reflecting from it.

map-light.png
Note:
Object facing the light source
map-light2.png
Note:
Same object facing away from the user

mapping

map-uv-mapping-1.png

Images need some special handling when mapped. Evas can easily take care of objects and do almost anything with them, but it's completely oblivious to the content of images, so each point in the map needs to be told to what pixel in the source image it belongs. Failing to do may sometimes result in the expected behavior, or it may look like a partial work.

The next image illustrates one possibility of a map being set to an image object, without setting the right UV mapping for each point. The objects themselves are mapped properly to their new geometry, but the image content may not be displayed correctly within the mapped object.

map-uv-mapping-2.png

Once Evas knows how to handle the source image within the map, it will transform it as needed. This is done with evas_map_point_image_uv_set(), which tells the map to which pixel in image it maps.

To match our example images to the maps above all we need is the size of each image, which can always be found with evas_object_image_size_get().

 evas_map_point_image_uv_set(m, 0, 0, 0);
 evas_map_point_image_uv_set(m, 1, 150, 0);
 evas_map_point_image_uv_set(m, 2, 150, 200);
 evas_map_point_image_uv_set(m, 3, 0, 200);
 evas_object_map_set(o, m);
 evas_object_map_enable_set(o, EINA_TRUE);

 evas_map_point_image_uv_set(m, 0, 0, 0);
 evas_map_point_image_uv_set(m, 1, 120, 0);
 evas_map_point_image_uv_set(m, 2, 120, 160);
 evas_map_point_image_uv_set(m, 3, 0, 160);
 evas_object_map_set(o2, m);
 evas_object_map_enable_set(o2, EINA_TRUE);

To get

map-uv-mapping-3.png

Maps can also be set to use part of an image only, or even map them inverted, and combined with evas_object_image_source_set() it can be used to achieve more interesting results.

 evas_object_image_size_get(evas_object_image_source_get(o), &w, &h);
 evas_map_point_image_uv_set(m, 0, 0, h);
 evas_map_point_image_uv_set(m, 1, w, h);
 evas_map_point_image_uv_set(m, 2, w, h / 3);
 evas_map_point_image_uv_set(m, 3, 0, h / 3);
 evas_object_map_set(o, m);
 evas_object_map_enable_set(o, EINA_TRUE);
map-uv-mapping-4.png

Examples:

Functions

void evas_map_util_points_populate_from_object_full (Evas_Map *m, const Evas_Object *obj, Evas_Coord z)
void evas_map_util_points_populate_from_object (Evas_Map *m, const Evas_Object *obj)
void evas_map_util_points_populate_from_geometry (Evas_Map *m, Evas_Coord x, Evas_Coord y, Evas_Coord w, Evas_Coord h, Evas_Coord z)
void evas_map_util_points_color_set (Evas_Map *m, int r, int g, int b, int a)
void evas_map_util_rotate (Evas_Map *m, double degrees, Evas_Coord cx, Evas_Coord cy)
void evas_map_util_zoom (Evas_Map *m, double zoomx, double zoomy, Evas_Coord cx, Evas_Coord cy)
void evas_map_util_3d_rotate (Evas_Map *m, double dx, double dy, double dz, Evas_Coord cx, Evas_Coord cy, Evas_Coord cz)
void evas_map_util_quat_rotate (Evas_Map *m, double qx, double qy, double qz, double qw, double cx, double cy, double cz)
void evas_map_util_3d_lighting (Evas_Map *m, Evas_Coord lx, Evas_Coord ly, Evas_Coord lz, int lr, int lg, int lb, int ar, int ag, int ab)
void evas_map_util_3d_perspective (Evas_Map *m, Evas_Coord px, Evas_Coord py, Evas_Coord z0, Evas_Coord foc)
Eina_Bool evas_map_util_clockwise_get (Evas_Map *m)
Evas_Map * evas_map_new (int count)
void evas_map_smooth_set (Evas_Map *m, Eina_Bool enabled)
Eina_Bool evas_map_smooth_get (const Evas_Map *m)
void evas_map_alpha_set (Evas_Map *m, Eina_Bool enabled)
Eina_Bool evas_map_alpha_get (const Evas_Map *m)
void evas_map_util_object_move_sync_set (Evas_Map *m, Eina_Bool enabled)
Eina_Bool evas_map_util_object_move_sync_get (const Evas_Map *m)
Evas_Map * evas_map_dup (const Evas_Map *m)
void evas_map_free (Evas_Map *m)
int evas_map_count_get (const Evas_Map *m)
Eina_Bool evas_map_coords_get (const Evas_Map *m, double x, double y, double *mx, double *my, int grab)
void evas_map_point_coord_set (Evas_Map *m, int idx, Evas_Coord x, Evas_Coord y, Evas_Coord z)
void evas_map_point_coord_get (const Evas_Map *m, int idx, Evas_Coord *x, Evas_Coord *y, Evas_Coord *z)
void evas_map_point_image_uv_set (Evas_Map *m, int idx, double u, double v)
void evas_map_point_image_uv_get (const Evas_Map *m, int idx, double *u, double *v)
void evas_map_point_color_set (Evas_Map *m, int idx, int r, int g, int b, int a)
void evas_map_point_color_get (const Evas_Map *m, int idx, int *r, int *g, int *b, int *a)

Function Documentation

Eina_Bool evas_map_alpha_get ( const Evas_Map *  m)

Get the alpha flag for map rendering

This gets the alpha flag for map rendering.

Parameters:
mmap to get the alpha from. Must not be NULL.
Returns:
EINA_FALSE if map is NULL EINA_TRUE otherwise.
Since :
2.3
void evas_map_alpha_set ( Evas_Map *  m,
Eina_Bool  enabled 
)

Set the alpha flag for map rendering

This sets alpha flag for map rendering. If the object is a type that has its own alpha settings, then this will take precedence. Only image objects have this currently. Setting this off stops alpha blending of the map area, and is useful if you know the object and/or all sub-objects is 100% solid.

Parameters:
mmap to modify. Must not be NULL.
enabledenable or disable alpha map rendering
Since :
2.3
Examples:
evas-map-utils.c.
Eina_Bool evas_map_coords_get ( const Evas_Map *  m,
double  x,
double  y,
double *  mx,
double *  my,
int  grab 
)

Apply a map transformation on given coordinate

Parameters:
mmap to use to transform x and y
xpoint x source coordinate
ypoint y source coordinate
mxpoint x after transformation by m
mypoint y after transformation by m
grab
Returns:
EINA_TRUE on success interpolation, otherwise
Since (EFL) :
1.20
int evas_map_count_get ( const Evas_Map *  m)

Get a maps size.

Returns the number of points in a map. Should be at least 4.

Parameters:
mmap to get size.
Returns:
-1 on error, points otherwise.
Since :
2.3
Evas_Map* evas_map_dup ( const Evas_Map *  m)

Copy a previously allocated map.

This makes a duplicate of the m object and returns it.

Parameters:
mmap to copy. Must not be NULL.
Returns:
newly allocated map with the same count and contents as m.
Since :
2.3
void evas_map_free ( Evas_Map *  m)

Free a previously allocated map.

This frees a given map m and all memory associated with it. You must NOT free a map returned by evas_object_map_get() as this is internal.

Parameters:
mmap to free.
Since :
2.3
Examples:
evas-map-utils.c, and evas-smart-object.c.
Evas_Map* evas_map_new ( int  count)

Create map of transformation points to be later used with an Evas object.

This creates a set of points (currently only 4 is supported. no other number for count will work). That is empty and ready to be modified with evas_map calls.

Parameters:
countnumber of points in the map.
Returns:
a newly allocated map or NULL on errors.
See also:
evas_map_free()
evas_map_dup()
evas_map_point_coord_set()
evas_map_point_image_uv_set()
evas_map_util_points_populate_from_object_full()
evas_map_util_points_populate_from_object()
evas_object_map_set()
Since :
2.3
Examples:
evas-map-utils.c, and evas-smart-object.c.
void evas_map_point_color_get ( const Evas_Map *  m,
int  idx,
int *  r,
int *  g,
int *  b,
int *  a 
)

Get the color set on a vertex in the map

This gets the color set by evas_map_point_color_set() on the given vertex of the map.

Parameters:
mmap to get the color of the vertex from.
idxindex of point get. Must be smaller than map size.
rpointer to red return
gpointer to green return
bpointer to blue return
apointer to alpha return
See also:
evas_map_point_coord_set()
evas_object_map_set()
Since :
2.3
void evas_map_point_color_set ( Evas_Map *  m,
int  idx,
int  r,
int  g,
int  b,
int  a 
)

Set the color of a vertex in the map

This sets the color of the vertex in the map. Colors will be linearly interpolated between vertex points through the map. Color will multiply the "texture" pixels (like GL_MODULATE in OpenGL). The default color of a vertex in a map is white solid (255, 255, 255, 255) which means it will have no affect on modifying the texture pixels.

Parameters:
mmap to change the color of.
idxindex of point to change. Must be smaller than map size.
rred (0 - 255)
ggreen (0 - 255)
bblue (0 - 255)
aalpha (0 - 255)
See also:
evas_map_util_points_color_set()
evas_map_point_coord_set()
evas_object_map_set()
Since :
2.3
Examples:
evas-map-utils.c.
void evas_map_point_coord_get ( const Evas_Map *  m,
int  idx,
Evas_Coord *  x,
Evas_Coord *  y,
Evas_Coord *  z 
)

Get the map point's coordinate.

This returns the coordinates of the given point in the map.

Parameters:
mmap to query point.
idxindex of point to query. Must be smaller than map size.
xwhere to return the X coordinate.
ywhere to return the Y coordinate.
zwhere to return the Z coordinate.
Since :
2.3
void evas_map_point_coord_set ( Evas_Map *  m,
int  idx,
Evas_Coord  x,
Evas_Coord  y,
Evas_Coord  z 
)

Change the map point's coordinate.

This sets the fixed point's coordinate in the map. Note that points describe the outline of a quadrangle and are ordered either clockwise or counter-clockwise. It is suggested to keep your quadrangles concave and non-complex, though these polygon modes may work, they may not render a desired set of output. The quadrangle will use points 0 and 1 , 1 and 2, 2 and 3, and 3 and 0 to describe the edges of the quadrangle.

The X and Y and Z coordinates are in canvas units. Z is optional and may or may not be honored in drawing. Z is a hint and does not affect the X and Y rendered coordinates. It may be used for calculating fills with perspective correct rendering.

Remember all coordinates are canvas global ones like with move and resize in evas.

Parameters:
mmap to change point. Must not be NULL.
idxindex of point to change. Must be smaller than map size.
xPoint X Coordinate
yPoint Y Coordinate
zPoint Z Coordinate hint (pre-perspective transform)
See also:
evas_map_util_rotate()
evas_map_util_zoom()
evas_map_util_points_populate_from_object_full()
evas_map_util_points_populate_from_object()
Since :
2.3
Examples:
evas-map-utils.c.
void evas_map_point_image_uv_get ( const Evas_Map *  m,
int  idx,
double *  u,
double *  v 
)

Get the map point's U and V texture source points

This returns the texture points set by evas_map_point_image_uv_set().

Parameters:
mmap to query point.
idxindex of point to query. Must be smaller than map size.
uwhere to write the X coordinate within the image/texture source
vwhere to write the Y coordinate within the image/texture source
Since :
2.3
void evas_map_point_image_uv_set ( Evas_Map *  m,
int  idx,
double  u,
double  v 
)

Change the map point's U and V texture source point

This sets the U and V coordinates for the point. This determines which coordinate in the source image is mapped to the given point, much like OpenGL and textures. Notes that these points do select the pixel, but are double floating point values to allow for accuracy and sub-pixel selection.

Parameters:
mmap to change the point of.
idxindex of point to change. Must be smaller than map size.
uthe X coordinate within the image/texture source
vthe Y coordinate within the image/texture source
See also:
evas_map_point_coord_set()
evas_object_map_set()
evas_map_util_points_populate_from_object_full()
evas_map_util_points_populate_from_object()
Since :
2.3
Examples:
evas-map-utils.c.
Eina_Bool evas_map_smooth_get ( const Evas_Map *  m)

Get the smoothing for map rendering

This gets smoothing for map rendering.

Parameters:
mmap to get the smooth from. Must not be NULL.
Returns:
EINA_TRUE if the smooth is enabled, EINA_FALSE otherwise.
Since :
2.3
void evas_map_smooth_set ( Evas_Map *  m,
Eina_Bool  enabled 
)

Set the smoothing for map rendering

This sets smoothing for map rendering. If the object is a type that has its own smoothing settings, then both the smooth settings for this object and the map must be turned off. By default smooth maps are enabled.

Parameters:
mmap to modify. Must not be NULL.
enabledenable or disable smooth map rendering
Since :
2.3
Examples:
evas-map-utils.c.
void evas_map_util_3d_lighting ( Evas_Map *  m,
Evas_Coord  lx,
Evas_Coord  ly,
Evas_Coord  lz,
int  lr,
int  lg,
int  lb,
int  ar,
int  ag,
int  ab 
)

Perform lighting calculations on the given Map

This is used to apply lighting calculations (from a single light source) to a given map. The R, G and B values of each vertex will be modified to reflect the lighting based on the light point coordinates, the light color and the ambient color, and at what angle the map is facing the light source. A surface should have its points be declared in a clockwise fashion if the face is "facing" towards you (as opposed to away from you) as faces have a "logical" side for lighting.

map-light3.png
Note:
Grey object, no lighting used
map-light4.png
Note:
Lights out! Every color set to 0
map-light5.png
Note:
Ambient light to full black, red light coming from close at the bottom-left vertex
map-light6.png
Note:
Same light as before, but not the light is set to 0 and ambient light is cyan
map-light7.png
Note:
Both lights are on
map-light8.png
Note:
Both lights again, but this time both are the same color.
Parameters:
mmap to change.
lxX coordinate in space of light point
lyY coordinate in space of light point
lzZ coordinate in space of light point
lrlight red value (0 - 255)
lglight green value (0 - 255)
lblight blue value (0 - 255)
arambient color red value (0 - 255)
agambient color green value (0 - 255)
abambient color blue value (0 - 255)
Since :
2.3
Examples:
evas-map-utils.c.
void evas_map_util_3d_perspective ( Evas_Map *  m,
Evas_Coord  px,
Evas_Coord  py,
Evas_Coord  z0,
Evas_Coord  foc 
)

Apply a perspective transform to the map

This applies a given perspective (3D) to the map coordinates. X, Y and Z values are used. The px and py points specify the "infinite distance" point in the 3D conversion (where all lines converge to like when artists draw 3D by hand). The z0 value specifies the z value at which there is a 1:1 mapping between spatial coordinates and screen coordinates. Any points on this z value will not have their X and Y values modified in the transform. Those further away (Z value higher) will shrink into the distance, and those less than this value will expand and become bigger. The foc value determines the "focal length" of the camera. This is in reality the distance between the camera lens plane itself (at or closer than this rendering results are undefined) and the "z0" z value. This allows for some "depth" control and foc must be greater than 0.

Parameters:
mmap to change.
pxThe perspective distance X coordinate
pyThe perspective distance Y coordinate
z0The "0" z plane value
focThe focal distance
Since :
2.3
Examples:
evas-map-utils.c.
void evas_map_util_3d_rotate ( Evas_Map *  m,
double  dx,
double  dy,
double  dz,
Evas_Coord  cx,
Evas_Coord  cy,
Evas_Coord  cz 
)

Rotate the map around 3 axes in 3D

This will rotate not just around the "Z" axis as in evas_map_util_rotate() (which is a convenience call for those only wanting 2D). This will rotate around the X, Y and Z axes. The Z axis points "into" the screen with low values at the screen and higher values further away. The X axis runs from left to right on the screen and the Y axis from top to bottom. Like with evas_map_util_rotate() you provide a center point to rotate around (in 3D).

Parameters:
mmap to change.
dxamount of degrees from 0.0 to 360.0 to rotate around X axis.
dyamount of degrees from 0.0 to 360.0 to rotate around Y axis.
dzamount of degrees from 0.0 to 360.0 to rotate around Z axis.
cxrotation's center horizontal position.
cyrotation's center vertical position.
czrotation's center vertical position.
Since :
2.3
Examples:
evas-map-utils.c.

Get the clockwise state of a map

This determines if the output points (X and Y. Z is not used) are clockwise or counter-clockwise. This can be used for "back-face culling". This is where you hide objects that "face away" from you. In this case objects that are not clockwise.

Parameters:
mmap to query.
Returns:
1 if clockwise, 0 otherwise
Since :
2.3
Examples:
evas-map-utils.c.

Get the flag of the object move synchronization for map rendering

This gets the flag of the object move synchronization for map rendering.

Parameters:
mmap to get the flag of the object move synchronization from. Must not be NULL.
Returns:
EINA_FALSE if map is NULL EINA_TRUE otherwise.
Since (EFL) :
1.13
Since :
3.0
void evas_map_util_object_move_sync_set ( Evas_Map *  m,
Eina_Bool  enabled 
)

Set the flag of the object move synchronization for map rendering

This sets the flag of the object move synchronization for map rendering. If the flag is set as enabled, the map will be moved as the object of the map is moved. By default, the flag of the object move synchronization is not enabled.

Parameters:
mmap to modify. Must not be NULL.
enabledenable or disable the object move synchronization for map rendering.
Since (EFL) :
1.13
Since :
3.0
void evas_map_util_points_color_set ( Evas_Map *  m,
int  r,
int  g,
int  b,
int  a 
)

Set color of all points to given color.

This call is useful to reuse maps after they had 3d lightning or any other colorization applied before.

Parameters:
mmap to change the color of.
rred (0 - 255)
ggreen (0 - 255)
bblue (0 - 255)
aalpha (0 - 255)
See also:
evas_map_point_color_set()
Since :
2.3
Examples:
evas-map-utils.c.
void evas_map_util_points_populate_from_geometry ( Evas_Map *  m,
Evas_Coord  x,
Evas_Coord  y,
Evas_Coord  w,
Evas_Coord  h,
Evas_Coord  z 
)

Populate source and destination map points to match given geometry.

Similar to evas_map_util_points_populate_from_object_full(), this call takes raw values instead of querying object's unmapped geometry. The given width will be used to calculate destination points (evas_map_point_coord_set()) and set the image uv (evas_map_point_image_uv_set()).

Parameters:
mmap to change all 4 points (must be of size 4).
xPoint X Coordinate
yPoint Y Coordinate
wwidth to use to calculate second and third points.
hheight to use to calculate third and fourth points.
zPoint Z Coordinate hint (pre-perspective transform). This value will be used for all four points.
See also:
evas_map_util_points_populate_from_object()
evas_map_point_coord_set()
evas_map_point_image_uv_set()
Since :
2.3
Examples:
evas-map-utils.c.
void evas_map_util_points_populate_from_object ( Evas_Map *  m,
const Evas_Object obj 
)

Populate source and destination map points to match exactly object.

Usually one initialize map of an object to match it's original position and size, then transform these with evas_map_util_* functions, such as evas_map_util_rotate() or evas_map_util_3d_rotate(). The original set is done by this function, avoiding code duplication all around.

Z Point coordinate is assumed as 0 (zero).

Parameters:
mmap to change all 4 points (must be of size 4).
objobject to use unmapped geometry to populate map coordinates.
See also:
evas_map_util_points_populate_from_object_full()
evas_map_util_points_populate_from_geometry()
evas_map_point_coord_set()
evas_map_point_image_uv_set()
Since :
2.3
Examples:
evas-map-utils.c, and evas-smart-object.c.
void evas_map_util_points_populate_from_object_full ( Evas_Map *  m,
const Evas_Object obj,
Evas_Coord  z 
)

Populate source and destination map points to match exactly object.

Usually one initialize map of an object to match it's original position and size, then transform these with evas_map_util_* functions, such as evas_map_util_rotate() or evas_map_util_3d_rotate(). The original set is done by this function, avoiding code duplication all around.

Parameters:
mmap to change all 4 points (must be of size 4).
objobject to use unmapped geometry to populate map coordinates.
zPoint Z Coordinate hint (pre-perspective transform). This value will be used for all four points.
See also:
evas_map_util_points_populate_from_object()
evas_map_point_coord_set()
evas_map_point_image_uv_set()
Since :
2.3
Examples:
evas-map-utils.c.
void evas_map_util_quat_rotate ( Evas_Map *  m,
double  qx,
double  qy,
double  qz,
double  qw,
double  cx,
double  cy,
double  cz 
)

Rotate the map in 3D using a unit quaternion.

This will rotate in 3D using a unit quaternion. Like with evas_map_util_3d_rotate() you provide a center point to rotate around (in 3D).

Parameters:
mmap to change.
qxthe x component of the imaginary part of the quaternion.
qythe y component of the imaginary part of the quaternion.
qzthe z component of the imaginary part of the quaternion.
qwthe w component of the real part of the quaternion.
cxrotation's center x.
cyrotation's center y.
czrotation's center z.
Warning:
Rotations can be done using a unit quaternion. Thus, this function expects a unit quaternion (i.e. qx² + qy² + qz² + qw² == 1). If this is not the case the behavior is undefined.
Since (EFL) :
1.8
Since :
2.3
void evas_map_util_rotate ( Evas_Map *  m,
double  degrees,
Evas_Coord  cx,
Evas_Coord  cy 
)

Change the map to apply the given rotation.

This rotates the indicated map's coordinates around the center coordinate given by cx and cy as the rotation center. The points will have their X and Y coordinates rotated clockwise by degrees degrees (360.0 is a full rotation). Negative values for degrees will rotate counter-clockwise by that amount. All coordinates are canvas global coordinates.

Parameters:
mmap to change.
degreesamount of degrees from 0.0 to 360.0 to rotate.
cxrotation's center horizontal position.
cyrotation's center vertical position.
See also:
evas_map_point_coord_set()
evas_map_util_zoom()
Since :
2.3
Examples:
evas-map-utils.c, and evas-smart-object.c.
void evas_map_util_zoom ( Evas_Map *  m,
double  zoomx,
double  zoomy,
Evas_Coord  cx,
Evas_Coord  cy 
)

Change the map to apply the given zooming.

Like evas_map_util_rotate(), this zooms the points of the map from a center point. That center is defined by cx and cy. The zoomx and zoomy parameters specify how much to zoom in the X and Y direction respectively. A value of 1.0 means "don't zoom". 2.0 means "double the size". 0.5 is "half the size" etc. All coordinates are canvas global coordinates.

Parameters:
mmap to change.
zoomxhorizontal zoom to use.
zoomyvertical zoom to use.
cxzooming center horizontal position.
cyzooming center vertical position.
See also:
evas_map_point_coord_set()
evas_map_util_rotate()
Since :
2.3